Kateen arteko distantziak R-n

dialektometriaz
Egilea

Juan

Argitaratua

2018-10-15

stringdist paketearen erabilerarako nire oharrak publiko egiten ditut hemen, bat edo bati ondo etorriko ote zaizkion, erabaki bat edo beste hartzeko. Hala ere, kontuan izan hemengo hau ohar tekniko multzoa baino ez dela, ordena gutxiduna.

Karaktere kateen arteko distantziak kalkulatzeko zenbait pakete eta funtizo daude, hemen stringdist baino ez da azaltzen. Lehengo beste post batean alineR paketea erabili zen. IPA kodeketa erabiliaz egiten du lan aipatu paketeak, baina ez du matrizik sortzeko berezko inplementaziorik.

Oinarrizko informazioa jakiteko:

# ??stringdist # Informazioa hartzeko
library(stringdist)

Paketeak hiru eratako distantziak kalkula ditzake:

Edizioan oinarritutako distantziak

  • Hamming \(d_{hamming}\)
    method = "hamming"
  • generalized Levenshtein \(d_{lv}\)
    method = "lv"
    Beste inplementazio bat dago r-core paketean: adist()
  • Longest Common Substring \(d_{lcs}\)
    method = "lcs"
  • optimal string alignment \(d_{osa}\) by default
    method = "osa"
  • generalized Damerau-Levenshtein \(d_{dl}\)
    method = "dl"
    Damerauk birplanteatu zuen Levenshteinen algoritmoa, baina kokapen trukaketa ikuskera zabalagotik ulertzen du.

Levenshtein eta Damerrau-Levenshtein distantzien arteko alderaketa

Levenshtein distantziarekin

stringdist("ab", "bca", method = "lv")
[1] 3

Emaitza honela kalkulatzen du:

\[ab\xrightarrow[+1]{kendu\ b}a\xrightarrow[+1]{gehitu\ b}ba\xrightarrow[+1]{gehitu\ c}bca\]

Damerou-Levenshtein distantzia

Horrekin \(d_{dl}\) berriz:

stringdist("ab", "bca", method = "dl")
[1] 2

\[ab\xrightarrow[+1]{aldatu\ b,a}ba\xrightarrow[+1]{gehitu\ c}bca\]

Laburpena

Beraz, denera honela antolatzen dira distantziak:

dhamming >= dlcs >= dlv >= dosa >= dlv >= 0

Eta distantziok ez dute hartzen kontuan karaktere katearen luzera emaitzetan

# Zein bi kate multzoen artean dago distantzia handiagoa
stringdist("hortorrinogarinlologo", "otorrinonaringologo", method = "lv") ; stringdist('jai', 'gin', method = "lv")
[1] 4
[1] 3

Ematen du komeni litzatekeela aplikazioren bat ezartzea katearen luzera ere kontuan izango duena, dlvren gainean eginda.

q-grametan oinarritutakoak

q-gram neurriak beti daude 0 eta 1 artean, 0 litzateke alderik ez duena eta 1 erabat bestelakoa.

Edozein kate > 0 dela, berori sortzen duten q luzerako zenbait grametan. Lehengo jai hori izango da, q=2 hartzen badugu, ja eta ai.

q-gram distantzia kalkulatzeko alderatzen dira kate bitan ematen diren q-gramak eta zenbatzen dira elkarrekin ez dituzten qgram kopurua. Esate baterako:

stringdist('leia', 'leela', method = "jaccard", q=2)
[1] 0.8333333

Horren azalpena honela ulertu behar da: \(Q('leia';2)=\{'le', 'ei', 'ia'\}\) eta \(Q('leela';2)=\{'le','ee','el','la'\}\) batera ez datozenak 6 dira, beraz: \(1-\frac{1}{6}\approx 0.83\).

Beraz, emaitzak qren tamainaren araberakoa izango da:

stringdist('leia', 'leela', method = "jaccard", q=1); 
[1] 0.25
stringdist('leia', 'leela', method = "jaccard", q=3)
[1] 1

Lehen edizioan oinarritutako distantzietarako alderatu ditugun elementuak q-grametan alderatuta honela ikusiko lirateke:

stringdist("hortorrinogarinlologo", "otorrinonaringologo", method = "jaccard", q=2); stringdist('jai', 'gin', method = "jaccard", q=2)
[1] 0.4210526
[1] 1
  • q-gram \(d_{qgram}\)
    method = "qgram"
    Honek dio zenbat q-gram ez duten komun alderatzen diren kateek
  • Jaccard \(d_{jaccard}\)
    method = "jaccard"
    Honek aurrekoaren antzera, baina komun dituztenak kontuan izanda, halan 0 eta 1en arteko balioak hartzen ditu
  • cosine \(d_{cos}\)
    method = "cosine"
    Honek kosinuaren kalkulua hartzen du oinarri. Geometrian oinarritutako neurria da: alderatzen diren s eta t kate bi hartuta, v(s;q) eta v(t;q) ulertu behar dira. Bektore bien arteko anguluaren kosinua da dcos hori.

Heuristic ikuspegikoak

Ez zaizkigu interesatzen, horregatik aipatu baino ez dir aegiten

  • Jaro
  • Jaro-Winkler

Gure interes eta asmoen arabera begiratu beharrekoak:

  • Distantzia era desberdinen araberako hurrenkerak eregi, teorian oinarrituta horien doikuntza aztertzeko.
  • Aztertu literaturan zelan agertzen diren distantzion erabilerak.
  • Aztertu distantzion araberako sailkapenak koherenteak diren (cluster analisa)

Sintaxia

Paketearen oinarrizko aginduak dira stringdist, elementu bien arteko distantzia kalkulatzen duena, eta stringdistmatrix matriz biko elementuak alderatzen dituena.

Aztertzeko erabiliko ditudan datuak:

# Datuak aukeratu
datuak <- read.table('datuak', 
                     sep = ',', 
                     stringsAsFactors = F)
datuak <- datuak[,-1]
colnames(datuak) <- datuak[1,]
rownames(datuak) <- datuak[,1]
datuak <- datuak[-1, -1]

knitr::kable(datuak[2,20])
x
lenarte
knitr::kable(datuak[c(3:12),20])
x
lenarte
lenarte
lenarte
lenaurarte
lenaurarte
lenarte
lenarte
lenarte
lenaurarte
lenaurarte
stringdist(datuak[2,20], datuak[c(3:12),20])
 [1] 0 0 0 3 3 0 0 0 3 3

Matrizeak alderatzeko aginduarekin:

table(datuak[,20], datuak$Adin.tartea)
            
             adineko EI gazte heldu
  lenarte          4  1     1     2
  lenaurarte       0  0     2     2
x <- stringdistmatrix(datuak[,20], method = "cosine", q=2)
round(x,3)
       1     2     3     4     5     6     7     8     9    10    11
2  0.000                                                            
3  0.000 0.000                                                      
4  0.000 0.000 0.000                                                
5  0.000 0.000 0.000 0.000                                          
6  0.184 0.184 0.184 0.184 0.184                                    
7  0.184 0.184 0.184 0.184 0.184 0.000                              
8  0.000 0.000 0.000 0.000 0.000 0.184 0.184                        
9  0.000 0.000 0.000 0.000 0.000 0.184 0.184 0.000                  
10 0.000 0.000 0.000 0.000 0.000 0.184 0.184 0.000 0.000            
11 0.184 0.184 0.184 0.184 0.184 0.000 0.000 0.184 0.184 0.184      
12 0.184 0.184 0.184 0.184 0.184 0.000 0.000 0.184 0.184 0.184 0.000
plot(hclust(x), labels = datuak$Adin.tartea)

Matrizearen itxuran erakusteko, aurreko datuak:

xm <-as.matrix(round(x,3))
knitr::kable(xm)
1 2 3 4 5 6 7 8 9 10 11 12
0.000 0.000 0.000 0.000 0.000 0.184 0.184 0.000 0.000 0.000 0.184 0.184
0.000 0.000 0.000 0.000 0.000 0.184 0.184 0.000 0.000 0.000 0.184 0.184
0.000 0.000 0.000 0.000 0.000 0.184 0.184 0.000 0.000 0.000 0.184 0.184
0.000 0.000 0.000 0.000 0.000 0.184 0.184 0.000 0.000 0.000 0.184 0.184
0.000 0.000 0.000 0.000 0.000 0.184 0.184 0.000 0.000 0.000 0.184 0.184
0.184 0.184 0.184 0.184 0.184 0.000 0.000 0.184 0.184 0.184 0.000 0.000
0.184 0.184 0.184 0.184 0.184 0.000 0.000 0.184 0.184 0.184 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.184 0.184 0.000 0.000 0.000 0.184 0.184
0.000 0.000 0.000 0.000 0.000 0.184 0.184 0.000 0.000 0.000 0.184 0.184
0.000 0.000 0.000 0.000 0.000 0.184 0.184 0.000 0.000 0.000 0.184 0.184
0.184 0.184 0.184 0.184 0.184 0.000 0.000 0.184 0.184 0.184 0.000 0.000
0.184 0.184 0.184 0.184 0.184 0.000 0.000 0.184 0.184 0.184 0.000 0.000

Erreferentziak

Downey, S. S., Sun, G., & Norquest, P. (2017). alineR: an R Package for Optimizing Feature-Weighted Alignments and Linguistic Distances. The R Journal, 9(1), 138–152.

Loo, M. P. J. van der. (2014). The stringdist package for approximate string matching. The R Journal, 6(1), 111–122. *

Oin oharrak

  1. Oinarrizko operazioak dira (1) gehitzea, (2) kentzea, (3) ordezkatzea eta (4) tokiz aldatzea.↩︎